The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 X 1 X^3 1 0 1 1 1 1 X 1 X^3+X^2 1 1 1 X^2 1 1 1 X X 1 X^2 1 0 1 1 1 1 0 X 0 X 0 X^3 X^3+X X X^2 X^2+X X^2 X^3+X^2+X X^2 X^3+X^2 X^3+X^2+X X^3+X^2+X 0 X^2 X^3+X X^2+X X X X^2 X X^2 X^2+X X^3+X^2+X 0 X^3+X^2+X X^2+X X^3+X^2 X^3 X^3 X^3+X^2 0 X^3+X^2 X^2+X X X^2 X^3+X^2 X^3+X X^2 X^3+X X^2 X X^3+X^2 X^3 X X X X^3+X^2+X X^3+X X 0 X^3 X X X X X^3 X^3 X 0 0 X X X^3+X^2 X^3+X^2+X X^2+X X^2 X^2 X^3+X^2+X X 0 X^3 X^3+X^2+X X^3+X X^2 0 X X^3+X^2+X X^3 X^2 X^2+X 0 X^3+X X^3+X^2+X X^2 X^3+X X^3+X^2+X X^3+X^2+X 0 X^2 X^3 X^2+X X^2+X X^3+X^2 X X^2+X 0 X X^3+X^2 X^3+X^2 X^3 0 X^3+X X^2+X X^2+X X^2+X X^3+X X^3+X^2 X^3 0 X^2 X^2 X^3+X X^2 X^3+X^2 X^3+X^2+X X^3 X X X^3+X X^3+X^2 0 0 0 X^3 0 0 X^3 0 X^3 0 X^3 X^3 X^3 X^3 0 X^3 0 0 0 0 X^3 X^3 0 X^3 0 X^3 0 X^3 X^3 0 X^3 X^3 X^3 0 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 0 X^3 0 X^3 X^3 X^3 0 X^3 0 0 0 X^3 0 0 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 X^3 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 0 X^3 0 0 X^3 X^3 X^3 0 X^3 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 X^3 0 X^3 X^3 0 X^3 0 0 X^3 0 0 0 0 0 0 generates a code of length 62 over Z2[X]/(X^4) who´s minimum homogenous weight is 57. Homogenous weight enumerator: w(x)=1x^0+190x^57+205x^58+348x^59+383x^60+694x^61+688x^62+618x^63+318x^64+254x^65+126x^66+92x^67+49x^68+70x^69+19x^70+30x^71+1x^72+8x^73+1x^74+1x^102 The gray image is a linear code over GF(2) with n=496, k=12 and d=228. This code was found by Heurico 1.16 in 3.55 seconds.